哨兵机制的基本流程

哨兵其实就是一个运行在特殊模式下的 Redis 进程,主从库实例运行的同时,它也在运行。哨兵主要负责的就是三个任务:监控、选主(选择主库)和通知。

负责的三个任务 : 监控、选主、通知

我们先看监控。监控是指哨兵进程在运行时,周期性地给所有的主从库发送 PING 命令,检测它们是否仍然在线运行。如果从库没有在规定时间内响应哨兵的 PING 命令,哨兵就会把它标记为“下线状态”;同样,如果主库也没有在规定时间内响应哨兵的 PING 命令,哨兵就会判定主库下线,然后开始自动切换主库的流程。
这个流程首先是执行哨兵的第二个任务,选主。主库挂了以后,哨兵就需要从很多个从库里,按照一定的规则选择一个从库实例,把它作为新的主库。这一步完成后,现在的集群里就有了新主库。
然后,哨兵会执行最后一个任务:通知。在执行通知任务时,哨兵会把新主库的连接信息发给其他从库,让它们执行 replicaof 命令,和新主库建立连接,并进行数据复制。同时,哨兵会把新主库的连接信息通知给客户端,让它们把请求操作发到新主库上。
哨兵机制的三项任务与目标
哨兵机制的三项任务与目标
在这三个任务中,通知任务相对来说比较简单,哨兵只需要把新主库信息发给从库和客户端,让它们和新主库建立连接就行,并不涉及决策的逻辑。但是,在监控和选主这两个任务中,哨兵需要做出两个决策:
在监控任务中,哨兵需要判断主库是否处于下线状态;在选主任务中,哨兵也要决定选择哪个从库实例作为主库。

主观下线和客观下线

哨兵对主库的下线判断有“主观下线”和“客观下线”两种
哨兵进程会使用 PING 命令检测它自己和主、从库的网络连接情况,用来判断实例的状态。如果哨兵发现主库或从库对 PING 命令的响应超时了,那么,哨兵就会先把它标记为“主观下线”。
如果检测的是从库,那么,哨兵简单地把它标记为“主观下线”就行了,因为从库的下线影响一般不太大,集群的对外服务不会间断。
但是,如果检测的是主库,那么,哨兵还不能简单地把它标记为“主观下线”,开启主从切换。因为很有可能存在这么一个情况:那就是哨兵误判了,其实主库并没有故障。
可是,一旦启动了主从切换,后续的选主和通知操作都会带来额外的计算和通信开销。为了避免这些不必要的开销,我们要特别注意误判的情况。

误判

首先,我们要知道啥叫误判。很简单,就是主库实际并没有下线,但是哨兵误以为它下线了。误判一般会发生在集群网络压力较大、网络拥塞,或者是主库本身压力较大的情况下。 一旦哨兵判断主库下线了,就会开始选择新主库,并让从库和新主库进行数据同步,这个过程本身就会有开销,例如,哨兵要花时间选出新主库,从库也需要花时间和新主库同步。
而在误判的情况下,主库本身根本就不需要进行切换的,所以这个过程的开销是没有价值的。正因为这样,我们需要判断是否有误判,以及减少误判。
那怎么减少误判呢?在日常生活中,当我们要对一些重要的事情做判断的时候,经常会和家人或朋友一起商量一下,然后再做决定。
哨兵机制也是类似的,它通常会采用多实例组成的集群模式进行部署,这也被称为哨兵集群。引入多个哨兵实例一起来判断,就可以避免单个哨兵因为自身网络状况不好,而误判主库下线的情况。同时,多个哨兵的网络同时不稳定的概率较小,由它们一起做决策,误判率也能降低。

少数服从多数

在判断主库是否下线时,不能由一个哨兵说了算,只有大多数的哨兵实例,都判断主库已经“主观下线”了,主库才会被标记为“客观下线”,这个叫法也是表明主库下线成为一个客观事实了。
这个判断原则就是:少数服从多数。同时,这会进一步触发哨兵开始主从切换流程。
为了方便你理解,画一张图展示一下这里的逻辑。
如下图所示,Redis 主从集群有一个主库、三个从库,还有三个哨兵实例。在图片的左边,哨兵 2 判断主库为“主观下线”,但哨兵 1 和 3 却判定主库是上线状态,此时,主库仍然被判断为处于上线状态。在图片的右边,哨兵 1 和 2 都判断主库为“主观下线”,此时,即使哨兵 3 仍然判断主库为上线状态,主库也被标记为“客观下线”了。
客观下线的判断
客观下线的判断
简单来说,“客观下线”的标准就是,当有 N 个哨兵实例时,最好要有 N/2 + 1 个实例判断主库为“主观下线”,才能最终判定主库为“客观下线”。这样一来,就可以减少误判的概率,也能避免误判带来的无谓的主从库切换。(当然,有多少个实例做出“主观下线”的判断才可以,可以由 Redis 管理员自行设定)
借助于多个哨兵实例的共同判断机制,我们就可以更准确地判断出主库是否处于下线状态。如果主库的确下线了,哨兵就要开始下一个决策过程了,即从许多从库中,选出一个从库来做新主库。
 

如何选定新主库?

一般来说,我把哨兵选择新主库的过程称为“筛选 + 打分”。简单来说,我们在多个从库中,先按照一定的筛选条件,把不符合条件的从库去掉。然后,我们再按照一定的规则,给剩下的从库逐个打分,将得分最高的从库选为新主库,如下图所示:
新主库的选择过程
新主库的选择过程
在刚刚的这段话里,需要注意的是两个“一定”,现在,我们要考虑这里的“一定”具体是指什么。 首先来看筛选的条件。

筛选

一般情况下,我们肯定要先保证所选的从库仍然在线运行。不过,在选主时从库正常在线,这只能表示从库的现状良好,并不代表它就是最适合做主库的。
设想一下,如果在选主时,一个从库正常运行,我们把它选为新主库开始使用了。可是,很快它的网络出了故障,此时,我们就得重新选主了。这显然不是我们期望的结果。
所以,在选主时,除了要检查从库的当前在线状态,还要判断它之前的网络连接状态。如果从库总是和主库断连,而且断连次数超出了一定的阈值,我们就有理由相信,这个从库的网络状况并不是太好,就可以把这个从库筛掉了
 
具体怎么判断呢?你使用配置项 down-after-milliseconds * 10。其中,down-aftermilliseconds是我们认定主从库断连的最大连接超时时间。如果在 down-aftermilliseconds毫秒内,主从节点都没有通过网络联系上,我们就可以认为主从节点断连了。
如果发生断连的次数超过了 10 次,就说明这个从库的网络状况不好,不适合作为新主库。
 
好了,这样我们就过滤掉了不适合做主库的从库,完成了筛选工作。接下来就要给剩余的从库打分了。我们可以分别按照三个规则依次进行三轮打分,这三个规则分别是从库优先级、从库复制进度以及从库 ID 号。只要在某一轮中,有从库得分最高,那么它就是主库了,选主过程到此结束。如果没有出现得分最高的从库,那么就继续进行下一轮。

第一轮:优先级最高的从库得分高。

用户可以通过 slave-priority 配置项,给不同的从库设置不同优先级。比如,你有两个从库,它们的内存大小不一样,你可以手动给内存大的实例设置一个高优先级。在选主时,哨兵会给优先级高的从库打高分,如果有一个从库优先级最高,那么它就是新主库了。如果从库的优先级都一样,那么哨兵开始第二轮打分。
 

第二轮:和旧主库同步程度最接近的从库得分高。

这个规则的依据是,如果选择和旧主库同步最接近的那个从库作为主库,那么,这个新主库上就有最新的数据。 如何判断从库和旧主库间的同步进度呢? 主从库同步时有个命令传播的过程。在这个过程中,主库会用master_repl_offset 记录当前的最新写操作在 repl_backlog_buffer 中的位置,而从库会用 slave_repl_offset 这个值记录当前的复制进度。
此时,我们想要找的从库,它的 slave_repl_offset 需要最接近 master_repl_offset。如果在所有从库中,有从库的 slave_repl_offset 最接近 master_repl_offset,那么它的得分就最高,可以作为新主库。
就像下图所示,旧主库的 master_repl_offset 是 1000,从库 1、2 和 3 的slave_repl_offset 分别是 950、990 和 900,那么,从库 2 就应该被选为新主库。
基于复制进度的新主库选主原则
基于复制进度的新主库选主原则
当然,如果有两个从库的 slave_repl_offset 值大小是一样的(例如,从库 1 和从库 2 的slave_repl_offset 值都是 990),我们就需要给它们进行第三轮打分了。

数据同步状况的判断

  1. 判断哪个从库的数据同步最接近主库,不是拿从库与主库比较,而是从库之间互相比较,谁大谁就是最接近的
  1. 这样做的原因有二:主库已下线无法获取主库信息,环形缓冲区的位置偏移量是单调递增的(主库的被称为:master_repl_offset,从库的被称为:slave_repl_offset,其实两者本质是相同的,叫不同的名字只是为了区分)

第三轮:ID 号小的从库得分高。

每个实例都会有一个 ID,这个 ID 就类似于这里的从库的编号。目前,Redis 在选主库时,有一个默认的规定:在优先级和复制进度都相同的情况下,ID 号最小的从库得分最高,会被选为新主库。到这里,新主库就被选出来了,“选主”这个过程就完成了。
我们再回顾下这个流程。首先,哨兵会按照在线状态、网络状态,筛选过滤掉一部分不符合要求的从库,然后,依次按照优先级、复制进度、ID 号大小再对剩余的从库进行打分,只要有得分最高的从库出现,就把它选为新主库。
 

主从切换对客户端影响

通过哨兵机制,可以实现主从库的自动切换,这是实现服务不间断的关键支撑,同时,主从库切换是需要一定时间的。所以,考虑下,在这个切换过程中,客户端能否正常地进行请求操作呢?如果想要应用程序不感知服务的中断,还需要哨兵或需要客户端再做些什么吗?

主库下线,可读不可写

如果客户端使用了读写分离,那么读请求可以在从库上正常执行,不会受到影响。但是由于此时主库已经挂了,而且哨兵还没有选出新的主库,所以在这期间写请求会失败,失败持续的时间 = 哨兵切换主从的时间 + 客户端感知到新主库 的时间。
 

主库下线无感知,需要客户端与哨兵配合改造

如果不想让业务感知到异常,客户端只能把写失败的请求先缓存起来或写入消息队列中间件中,等哨兵切换完主从后,再把这些写请求发给新的主库,但这种场景只适合对写入请求返回值不敏感的业务,而且还需要业务层做适配,另外主从切换时间过长,也会导致客户端或消息队列中间件缓存写请求过多,切换完成之后重放这些请求的时间变长。
哨兵检测主库多久没有响应就提升从库为新的主库,这个时间是可以配置的(down-after-milliseconds参数)。配置的时间越短,哨兵越敏感,哨兵集群认为主库在短时间内连不上就会发起主从切换,这种配置很可能因为网络拥塞但主库正常而发生不必要的切换,当然,当主库真正故障时,因为切换得及时,对业务的影响最小。如果配置的时间比较长,哨兵越保守,这种情况可以减少哨兵误判的概率,但是主库故障发生时,业务写失败的时间也会比较久,缓存写请求数据量越多。
应用程序不感知服务的中断,还需要哨兵和客户端做些什么?当哨兵完成主从切换后,客户端需要及时感知到主库发生了变更,然后把缓存的写请求写入到新库中,保证后续写请求不会再受到影响,具体做法如下:

哨兵主动通知

哨兵提升一个从库为新主库后,哨兵会把新主库的地址写入自己实例的pubsub(switch-master)中。客户端需要订阅这个pubsub,当这个pubsub有数据时,客户端就能感知到主库发生变更,同时可以拿到最新的主库地址,然后把写请求写到这个新主库即可,这种机制属于哨兵主动通知客户端。
如果客户端因为某些原因错过了哨兵的通知,或者哨兵通知后客户端处理失败了,安全起见,客户端也需要支持主动去获取最新主从的地址进行访问。

客户端主动获取

所以,客户端需要访问主从库时,不能直接写死主从库的地址了,而是需要从哨兵集群中获取最新的地址(sentinel get-master-addr-by-name命令),这样当实例异常时,哨兵切换后或者客户端断开重连,都可以从哨兵集群中拿到最新的实例地址。
一般Redis的SDK都提供了通过哨兵拿到实例地址,再访问实例的方式,我们直接使用即可,不需要自己实现这些逻辑。
 

集群分片模式的Redis集群,可以不使用哨兵机制

当然,对于只有主从实例的情况,客户端需要和哨兵配合使用,而在分片集群模式下,这些逻辑都可以做在proxy层,这样客户端也不需要关心这些逻辑了,Codis就是这么做的。

qa

1、哨兵集群中有实例挂了,怎么办,会影响主库状态判断和选主吗?
这个属于分布式系统领域的问题了,指的是在分布式系统中,如果存在故障节点,整个集群是否还可以提供服务?而且提供的服务是正确的?
这是一个分布式系统容错问题,这方面最著名的就是分布式领域中的“拜占庭将军”问题了,“拜占庭将军问题”不仅解决了容错问题,还可以解决错误节点的问题,虽然比较复杂,但还是值得研究的,有兴趣的同学可以去了解下。
简单说结论:存在故障节点时,只要集群中大多数节点状态正常,集群依旧可以对外提供服务。
2、哨兵集群多数实例达成共识,判断出主库“客观下线”后,由哪个实例来执行主从切换呢?
哨兵集群判断出主库“主观下线”后,会选出一个“哨兵领导者”,之后整个过程由它来完成主从切换。
但是如何选出“哨兵领导者”?这个问题也是一个分布式系统中的问题,就是我们经常听说的共识算法,指的是集群中多个节点如何就一个问题达成共识。共识算法有很多种,例如Paxos、Raft,这里哨兵集群采用的类似于Raft的共识算法。
简单来说就是每个哨兵设置一个随机超时时间,超时后每个哨兵会请求其他哨兵为自己投票,其他哨兵节点对收到的第一个请求进行投票确认,一轮投票下来后,首先达到多数选票的哨兵节点成为“哨兵领导者”,如果没有达到多数选票的哨兵节点,那么会重新选举,直到能够成功选出“哨兵领导者”。

哨兵集群

如果有哨兵实例在运行时发生了故障,主从库还能正常切换吗?实际上,一旦多个实例组成了哨兵集群,即使有哨兵实例出现故障挂掉了,其他哨兵还能继续协作完成主从库切换的工作,包括判定主库是不是处于下线状态,选择新主库,以及通知从库和客户端。
如果你部署过哨兵集群的话就会知道,在配置哨兵的信息时,我们只需要用到下面的这个配置项,设置主库的 IP 和端口,并没有配置其他哨兵的连接信息。
sentinel monitor <master-name> <ip> <redis-port> <quorum>
这些哨兵实例既然都不知道彼此的地址,又是怎么组成集群的呢?要弄明白这个问题,我们就需要学习一下哨兵集群的组成和运行机制了

基于 pub/sub 机制的哨兵集群组成

哨兵实例之间可以相互发现,要归功于 Redis 提供的 pub/sub 机制,也就是发布 / 订阅机制。
哨兵只要和主库建立起了连接,就可以在主库上发布消息了,比如说发布它自己的连接信息(IP 和端口)。同时,它也可以从主库上订阅消息,获得其他哨兵发布的连接信息。
当多个哨兵实例都在主库上做了发布和订阅操作后,它们之间就能知道彼此的 IP 地址和端口。
除了哨兵实例,我们自己编写的应用程序也可以通过 Redis 进行消息的发布和订阅。所以,为了区分不同应用的消息,Redis 会以频道的形式,对这些消息进行分门别类的管理。所谓的频道,实际上就是消息的类别。当消息类别相同时,它们就属于同一个频道。
反之,就属于不同的频道。只有订阅了同一个频道的应用,才能通过发布的消息进行信息交换。
在主从集群中,主库上有一个名为“sentinel:hello”的频道,不同哨兵就是通过它来相互发现,实现互相通信的。
 
举个例子,具体说明一下。在下图中,哨兵 1 把自己的 IP(172.16.19.3)和端口(26579)发布到“sentinel:hello”频道上,哨兵 2 和 3 订阅了该频道。那么 此时,哨兵 2 和 3 就可以从这个频道直接获取哨兵 1 的 IP 地址和端口号。
然后,哨兵 2、3 可以和哨兵 1 建立网络连接。通过这个方式,哨兵 2 和 3 也可以建立网络连接,这样一来,哨兵集群就形成了。它们相互间可以通过网络连接进行通信,比如说
对主库有没有下线这件事儿进行判断和协商。
notion image
哨兵除了彼此之间建立起连接形成集群外,还需要和从库建立连接。这是因为,在哨兵的监控任务中,它需要对主从库都进行心跳判断,而且在主从库切换完成后,它还需要通知从库,让它们和新主库进行同步。
那么,哨兵是如何知道从库的 IP 地址和端口的呢?
这是由哨兵向主库发送 INFO 命令来完成的
就像下图所示,哨兵 2 给主库发送 INFO 命令,主库接受到这个命令后,就会把从库列表返回给哨兵。接着,哨兵就可以根据从库列表中的连接信息,和每个从库建立连接,并在这个连接上持续地对从库进行监控。
哨兵 1和 3 可以通过相同的方法和从库建立连接。
notion image
你看,通过 pub/sub 机制,哨兵之间可以组成集群,同时,哨兵又通过 INFO 命令,获得了从库连接信息,也能和从库建立连接,并进行监控了。
但是,哨兵不能只和主、从库连接。因为,主从库切换后,客户端也需要知道新主库的连接信息,才能向新主库发送请求操作。所以,哨兵还需要完成把新主库的信息告诉客户端这个任务。
而且,在实际使用哨兵时,我们有时会遇到这样的问题:如何在客户端通过监控了解哨兵进行主从切换的过程呢?比如说,主从切换进行到哪一步了?这其实就是要求,客户端能够获取到哨兵集群在监控、选主、切换这个过程中发生的各种事件。
此时,我们仍然可以依赖 pub/sub 机制,来帮助我们完成哨兵和客户端间的信息同步。

基于 pub/sub 机制的客户端事件通知

从本质上说,哨兵就是一个运行在特定模式下的 Redis 实例,只不过它并不服务请求操作,只是完成监控、选主和通知的任务。所以,每个哨兵实例也提供 pub/sub 机制,客户端可以从哨兵订阅消息。哨兵提供的消息订阅频道有很多,不同频道包含了主从库切换过程中的不同关键事件
我把重要的频道汇总在了一起,涉及几个关键事件,包括主库下线判断、新主库选定、从库重新配置。
notion image
知道了这些频道之后,你就可以让客户端从哨兵这里订阅消息了。具体的操作步骤是,客户端读取哨兵的配置文件后,可以获得哨兵的地址和端口,和哨兵建立网络连接。然后,我们可以在客户端执行订阅命令,来获取不同的事件消息。
举个例子,你可以执行如下命令,来订阅“所有实例进入客观下线状态的事件”:
SUBSCRIBE +odown
当然,你也可以执行如下命令,订阅所有的事件:
PSUBSCRIBE *
当哨兵把新主库选择出来后,客户端就会看到下面的 switch-master 事件。这个事件表示主库已经切换了,新主库的 IP 地址和端口信息已经有了。这个时候,客户端就可以用这里面的新主库地址和端口进行通信了。
switch-master <master name> <oldip> <oldport> <newip> <newport>
有了这些事件通知,客户端不仅可以在主从切换后得到新主库的连接信息,还可以监控到主从库切换过程中发生的各个重要事件。这样,客户端就可以知道主从切换进行到哪一步了,有助于了解切换进度。
好了,有了 pub/sub 机制,哨兵和哨兵之间、哨兵和从库之间、哨兵和客户端之间就都能建立起连接了,再加上主库下线判断和选主依据,哨兵集群的监控、选主和通知三个任务就基本可以正常工作了。
不过,我们还需要考虑一个问题:主库故障以后,哨兵集群有多个实例,那怎么确定由哪个哨兵来进行实际的主从切换呢?
 

哨兵的leader选举机制

确定由哪个哨兵执行主从切换的过程,和主库“客观下线”的判断过程类似,也是一个“投票仲裁”的过程。在具体了解这个过程前,我们再来看下,判断“客观下线”的仲裁过程。
哨兵集群要判定主库“客观下线”,需要有一定数量的实例都认为该主库已经“主观下线”了。之前介绍了判断“客观下线”的原则,接下来,我介绍下具体的判断过程。 任何一个实例只要自身判断主库“主观下线”后,就会给其他实例发送 is-master-downby-addr 命令。接着,其他实例会根据自己和主库的连接情况,做出 Y 或 N 的响应,Y 相当于赞成票,N 相当于反对票。
notion image
一个哨兵获得了仲裁所需的赞成票数后,就可以标记主库为“客观下线”。这个所需的赞成票数是通过哨兵配置文件中的 quorum 配置项设定的。
例如,现在有 5 个哨兵,quorum 配置的是 3,那么,一个哨兵需要 3 张赞成票,就可以标记主库为“客观下线”了。
这 3 张赞成票包括哨兵自己的一张赞成票和另外两个哨兵的赞成票。
此时,这个哨兵就可以再给其他哨兵发送命令,表明希望由自己来执行主从切换,并让所有其他哨兵进行投票。
这个投票过程称为“Leader 选举”。因为最终执行主从切换的哨兵称为 Leader,投票过程就是确定 Leader。
 
在投票过程中,任何一个想成为 Leader 的哨兵,要满足两个条件:
第一,拿到半数以上的赞成票;
第二,拿到的票数同时还需要大于等于哨兵配置文件中的 quorum 值。
 
以 3 个哨兵为例,假设此时的 quorum 设置为 2,那么,任何一个想成为 Leader 的哨兵只要拿到2 张赞成票,就可以了。
这么说你可能还不太好理解,我再画一张图片,展示一下 3 个哨兵、quorum 为 2 的选举过程。
notion image
在 T1 时刻,S1 判断主库为“客观下线”,它想成为 Leader,就先给自己投一张赞成票,然后分别向 S2 和 S3 发送命令,表示要成为 Leader。
在 T2 时刻,S3 判断主库为“客观下线”,它也想成为 Leader,所以也先给自己投一张赞成票,再分别向 S1 和 S2 发送命令,表示要成为 Leader。
在 T3 时刻,S1 收到了 S3 的 Leader 投票请求。因为 S1 已经给自己投了一票 Y,所以它不能再给其他哨兵投赞成票了,所以 S1 回复 N 表示不同意。
同时,S2 收到了 T2 时 S3发送的 Leader 投票请求。
因为 S2 之前没有投过票,它会给第一个向它发送投票请求的哨兵回复 Y,给后续再发送投票请求的哨兵回复 N,所以,在 T3 时,S2 回复 S3,同意 S3成为 Leader。
在 T4 时刻,S2 才收到 T1 时 S1 发送的投票命令。因为 S2 已经在 T3 时同意了 S3 的投票请求,此时,S2 给 S1 回复 N,表示不同意 S1 成为 Leader。
发生这种情况,是因为S3 和 S2 之间的网络传输正常,而 S1 和 S2 之间的网络传输可能正好拥塞了,导致投票请求传输慢了。
 
最后,在 T5 时刻,S1 得到的票数是来自它自己的一票 Y 和来自 S2 的一票 N。而 S3 除了自己的赞成票 Y 以外,还收到了来自 S2 的一票 Y。
此时,S3 不仅获得了半数以上的Leader 赞成票,也达到预设的 quorum 值(quorum 为 2),所以它最终成为了Leader
接着,S3 会开始执行选主操作,而且在选定新主库后,会给其他从库和客户端通知新主库的信息。
 
如果 S3 没有拿到 2 票 Y,那么这轮投票就不会产生 Leader。哨兵集群会等待一段时间(也就是哨兵故障转移超时时间的 2 倍),再重新选举。
这是因为,哨兵集群能够进行成功投票,很大程度上依赖于选举命令的正常网络传播。如果网络压力较大或有短时堵塞,就可能导致没有一个哨兵能拿到半数以上的赞成票。所以,等到网络拥塞好转之后,再进行投票选举,成功的概率就会增加。
 
 
需要注意的是,如果哨兵集群只有 2 个实例,此时,一个哨兵要想成为 Leader,必须获得2 票,而不是 1 票。所以,如果有个哨兵挂掉了,那么,此时的集群是无法进行主从库切换的。
因此,通常我们至少会配置 3 个哨兵实例。这一点很重要,你在实际应用时可不能忽略了。
 

哨兵集群机制总结

通常,我们在解决一个系统问题的时候,会引入一个新机制,或者设计一层新功能,就像我们在这两节课学习的内容:为了实现主从切换,我们引入了哨兵;为了避免单个哨兵故障后无法进行主从切换,以及为了减少误判率,又引入了哨兵集群;哨兵集群又需要有一些机制来支撑它的正常运行。 这节课上,我就向你介绍了支持哨兵集群的这些关键机制,包括:
  1. 基于 pub/sub 机制的哨兵集群组成过程;
  1. 基于 INFO 命令的从库列表,这可以帮助哨兵和从库建立连接;
  1. 基于哨兵自身的 pub/sub 功能,这实现了客户端和哨兵之间的事件通知。
对于主从切换,当然不是哪个哨兵想执行就可以执行的,否则就乱套了。所以,这就需要哨兵集群在判断了主库“客观下线”后,经过投票仲裁,选举一个 Leader 出来,由它负责实际的主从切换,即由它来完成新主库的选择以及通知从库与客户端。
最后,我想再给你分享一个经验:要保证所有哨兵实例的配置是一致的,尤其是主观下线的判断值 down-after-milliseconds。我们曾经就踩过一个“坑”。当时,在我们的项目中,因为这个值在不同的哨兵实例上配置不一致,导致哨兵集群一直没有对有故障的主库形成共识,也就没有及时切换主库,最终的结果就是集群服务不稳定。所以,你一定不要忽略这条看似简单的经验。
 

QA

  1. 图示哨兵选举过程中,选举的结果取决于S2的投票,如果S2也投给自己,并且每轮投票都是只投给自己,岂不是无法选出“Leader”,是不是这个过程从了死循环呢?
    1. 文章中的例子里,要发生S1、S2和S3同时同自己投票的情况,这需要这三个哨兵基本同时判定了主库客观下线。但是,不同哨兵的网络连接、系统压力不完全一样,接收到下线协商消息的时间也可能不同,所以,它们同时做出主库客观下线判定的概率较小,一般都有个先后关系。文章中的例子,就是S1、S3先判定,S2一直没有判定。
      其次,哨兵对主从库进行的在线状态检查等操作,是属于一种时间事件,用一个定时器来完成,一般来说每100ms执行一次这些事件。每个哨兵的定时器执行周期都会加上一个小小的随机时间偏移,目的是让每个哨兵执行上述操作的时间能稍微错开些,也是为了避免它们都同时判定主库下线,同时选举Leader。
      最后,即使出现了都投给自己一票的情况,导致无法选出Leader,哨兵会停一段时间(一般是故障转移超时时间failover_timeout的2倍),然后再可以进行下一轮投票。
  1. 投票投给谁,依据是什么?
    1. 哨兵如果没有给自己投票,就会把票投给第一个给它发送投票请求的哨兵。后续再有投票请求来,哨兵就拒接投票了。
  1. 假设有一个 Redis 集群,是“一主四从”,同时配置了包含 5 个哨兵实例的集群,quorum 值设为 2。在运行过程中,如果有 3 个哨兵实例都发生故障了,此时,Redis 主库如果有故障,还能正确地判断主库“客观下线”吗?如果可以的话,还能进行主从库自动切换吗?此外,哨兵实例是不是越多越好呢,如果同时调大 down-after-milliseconds值,对减少误判是不是也有好处呢?
经过实际测试,我的结论如下:
1、哨兵集群可以判定主库“主观下线”。由于quorum=2,所以当一个哨兵判断主库“主观下线”后,询问另外一个哨兵后也会得到同样的结果,2个哨兵都判定“主观下线”,达到了quorum的值,因此,哨兵集群可以判定主库为“客观下线”。
2、但哨兵不能完成主从切换。哨兵标记主库“客观下线后”,在选举“哨兵领导者”时,一个哨兵必须拿到超过多数的选票(5/2+1=3票)。但目前只有2个哨兵活着,无论怎么投票,一个哨兵最多只能拿到2票,永远无法达到多数选票的结果。
但是投票选举过程的细节并不是大家认为的:每个哨兵各自1票,这个情况是不一定的。下面具体说一下:
场景a:哨兵A先判定主库“主观下线”,然后马上询问哨兵B(注意,此时哨兵B只是被动接受询问,并没有去询问哨兵A,也就是它还没有进入判定“客观下线”的流程),哨兵B回复主库已“主观下线”,达到quorum=2后哨兵A此时可以判定主库“客观下线”。此时,哨兵A马上可以向其他哨兵发起成为“哨兵领导者”的投票,哨兵B收到投票请求后,由于自己还没有询问哨兵A进入判定“客观下线”的流程,所以哨兵B是可以给哨兵A投票确认的,这样哨兵A就已经拿到2票了。等稍后哨兵B也判定“主观下线”后想成为领导者时,因为它已经给别人投过票了,所以这一轮自己就不能再成为领导者了。
场景b:哨兵A和哨兵B同时判定主库“主观下线”,然后同时询问对方后都得到可以“客观下线”的结论,此时它们各自给自己投上1票后,然后向其他哨兵发起投票请求,但是因为各自都给自己投过票了,因此各自都拒绝了对方的投票请求,这样2个哨兵各自持有1票。
场景a是1个哨兵拿到2票,场景b是2个哨兵各自有1票,这2种情况都不满足大多数选票(3票)的结果,因此无法完成主从切换。
经过测试发现,场景b发生的概率非常小,只有2个哨兵同时进入判定“主观下线”的流程时才可以发生。我测试几次后发现,都是复现的场景a。
哨兵实例是不是越多越好?
并不是,我们也看到了,哨兵在判定“主观下线”和选举“哨兵领导者”时,都需要和其他节点进行通信,交换信息,哨兵实例越多,通信的次数也就越多,而且部署多个哨兵时,会分布在不同机器上,节点越多带来的机器故障风险也会越大,这些问题都会影响到哨兵的通信和选举,出问题时也就意味着选举时间会变长,切换主从的时间变久。
调大down-after-milliseconds值,对减少误判是不是有好处?
是有好处的,适当调大down-after-milliseconds值,当哨兵与主库之间网络存在短时波动时,可以降低误判的概率。但是调大down-after-milliseconds值也意味着主从切换的时间会变长,对业务的影响时间越久,我们需要根据实际场景进行权衡,设置合理的阈值。
 
哨兵的实例不是越多越好,因为哨兵的选举使用的是Raft协议,这个协议是Paxos协议的变种,这种协议在选主时,需要所有的节点参与投票,所以节点越多,选举耗时可能就会更久,所以根据对服务SLA的要求,评估一个节点可能出现问题的概率,选择合适的哨兵数量。
down-after-milliseconds不是越大越好的,虽然可以减少误判的概率,但是问题真正发生时,服务的不可用状态也会更久,所以down-after-milliseconds要根据真实的业务场景,进行取舍。