内存表的数据组织结构
为了便于分析,我来把这个问题简化一下,假设有以下的两张表t1 和 t2,其中表t1使用Memory 引擎, 表t2使用InnoDB引擎。
create table t1(id int primary key, c int) engine=Memory; create table t2(id int primary key, c int) engine=innodb; insert into t1 values(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,0); insert into t2 values(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,0);
然后,我分别执行
select * from t1
和select * from t2
。可以看到,内存表t1的返回结果里面0在最后一行,而InnoDB表t2的返回结果里0在第一行。
出现这个区别的原因,要从这两个引擎的主键索引的组织方式说起。
表t2用的是InnoDB引擎,它的主键索引id的组织方式,你已经很熟悉了:InnoDB表的数据就放在主键索引树上,主键索引是B+树。所以表t2的数据组织方式如下图所示:
主键索引上的值是有序存储的。在执行
select *
的时候,就会按照叶子节点从左到右扫描,所以得到的结果里,0就出现在第一行。与InnoDB引擎不同,Memory引擎的数据和索引是分开的。我们来看一下表t1中的数据内容。
可以看到,内存表的数据部分以数组的方式单独存放,而主键id索引里,存的是每个数据的位置。主键id是hash索引,可以看到索引上的key并不是有序的。
在内存表t1中,当我执行
select *
的时候,走的是全表扫描,也就是顺序扫描这个数组。因此,0就是最后一个被读到,并放入结果集的数据。可见,InnoDB和Memory引擎的数据组织方式是不同的:
- InnoDB引擎把数据放在主键索引上,其他索引上保存的是主键id。这种方式,我们称之为索引组织表(Index Organizied Table)。
- 而Memory引擎采用的是把数据单独存放,索引上保存数据位置的数据组织形式,我们称之为堆组织表(Heap Organizied Table)。
从中我们可以看出,这两个引擎的一些典型不同:
- InnoDB表的数据总是有序存放的,而内存表的数据就是按照写入顺序存放的;
- 当数据文件有空洞的时候,InnoDB表在插入新数据的时候,为了保证数据有序性,只能在固定的位置写入新值,而内存表找到空位就可以插入新值;
- 数据位置发生变化的时候,InnoDB表只需要修改主键索引,而内存表需要修改所有索引;
- InnoDB表用主键索引查询时需要走一次索引查找,用普通索引查询的时候,需要走两次索引查找。而内存表没有这个区别,所有索引的“地位”都是相同的。
- InnoDB支持变长数据类型,不同记录的长度可能不同;内存表不支持Blob 和 Text字段,并且即使定义了varchar(N),实际也当作char(N),也就是固定长度字符串来存储,因此内存表的每行数据长度相同。
由于内存表的这些特性,每个数据行被删除以后,空出的这个位置都可以被接下来要插入的数据复用。比如,如果要在表t1中执行:
delete from t1 where id=5; insert into t1 values(10,10); select * from t1;
就会看到返回结果里,id=10这一行出现在id=4之后,也就是原来id=5这行数据的位置。
需要指出的是,表t1的这个主键索引是哈希索引,因此如果执行范围查询,比如
select * from t1 where id<5;
是用不上主键索引的,需要走全表扫描。那如果要让内存表支持范围扫描,应该怎么办呢 ?
hash索引和B-Tree索引
实际上,内存表也是支B-Tree索引的。在id列上创建一个B-Tree索引,SQL语句可以这么写:
alter table t1 add index a_btree_index using btree (id);
这时,表t1的数据组织形式就变成了这样:
新增的这个B-Tree索引你看着就眼熟了,这跟InnoDB的b+树索引组织形式类似。
作为对比,你可以看一下这下面这两个语句的输出:
可以看到,执行
select * from t1 where id<5
的时候,优化器会选择B-Tree索引,所以返回结果是0到4。 使用force index
强行使用主键id这个索引,id=0这一行就在结果集的最末尾了。其实,一般在我们的印象中,内存表的优势是速度快,其中的一个原因就是Memory引擎支持hash索引。当然,更重要的原因是,内存表的所有数据都保存在内存,而内存的读写速度总是比磁盘快。
内存表的缺点
但是,接下来我要跟你说明,为什么我不建议你在生产环境上使用内存表。这里的原因主要包括两个方面:
- 锁粒度问题;
- 数据持久化问题。
内存表的锁
我们先来说说内存表的锁粒度问题。
内存表不支持行锁,只支持表锁。因此,一张表只要有更新,就会堵住其他所有在这个表上的读写操作。
需要注意的是,这里的表锁跟之前我们介绍过的MDL锁不同,但都是表级的锁。接下来,我通过下面这个场景,跟你模拟一下内存表的表级锁。
在这个执行序列里,session A的update语句要执行50秒,在这个语句执行期间session B的查询会进入锁等待状态。session C的s
how processlist
结果输出如下:跟行锁比起来,表锁对并发访问的支持不够好。所以,内存表的锁粒度问题,决定了它在处理并发事务的时候,性能也不会太好。
数据持久性问题
接下来,我们再看看数据持久性的问题。
数据放在内存中,是内存表的优势,但也是一个劣势。因为,数据库重启的时候,所有的内存表都会被清空。
你可能会说,如果数据库异常重启,内存表被清空也就清空了,不会有什么问题啊。但是,在高可用架构下,内存表的这个特点简直可以当做bug来看待了。为什么这么说呢?
我们先看看M-S架构下,使用内存表存在的问题。
我们来看一下下面这个时序:
- 业务正常访问主库;
- 备库硬件升级,备库重启,内存表t1内容被清空;
- 备库重启后,客户端发送一条update语句,修改表t1的数据行,这时备库应用线程就会报错“找不到要更新的行”。
这样就会导致主备同步停止。当然,如果这时候发生主备切换的话,客户端会看到,表t1的数据“丢失”了。
在上图中这种有proxy的架构里,大家默认主备切换的逻辑是由数据库系统自己维护的。这样对客户端来说,就是“网络断开,重连之后,发现内存表数据丢失了”。
你可能说这还好啊,毕竟主备发生切换,连接会断开,业务端能够感知到异常。
但是,接下来内存表的这个特性就会让使用现象显得更“诡异”了。由于MySQL知道重启之后,内存表的数据会丢失。所以,担心主库重启之后,出现主备不一致,MySQL在实现上做了这样一件事儿:在数据库重启之后,往binlog里面写入一行
DELETE FROM t1
。如果你使用是如下图所示的双M结构的话:
在备库重启的时候,备库binlog里的delete语句就会传到主库,然后把主库内存表的内容删除。这样你在使用的时候就会发现,主库的内存表数据突然被清空了。
基于上面的分析,你可以看到,内存表并不适合在生产环境上作为普通数据表使用。
有同学会说,但是内存表执行速度快呀。这个问题,其实你可以这么分析:
- 如果你的表更新量大,那么并发度是一个很重要的参考指标,InnoDB支持行锁,并发度比内存表好;
- 能放到内存表的数据量都不大。如果你考虑的是读的性能,一个读QPS很高并且数据量不大的表,即使是使用InnoDB,数据也是都会缓存在InnoDB Buffer Pool里的。因此,使用InnoDB表的读性能也不会差。
所以,我建议你把普通内存表都用InnoDB表来代替。但是,有一个场景却是例外的。
这个场景就是,用户临时表。在数据量可控,不会耗费过多内存的情况下,你可以考虑使用内存表。
内存临时表刚好可以无视内存表的两个不足,主要是下面的三个原因:
- 临时表不会被其他线程访问,没有并发性的问题;
- 临时表重启后也是需要删除的,清空数据这个问题不存在;
- 备库的临时表也不会影响主库的用户线程。
现在,我们回过头再看一下join语句优化的例子,当时我建议的是创建一个InnoDB临时表,使用的语句序列是:
create temporary table temp_t(id int primary key, a int, b int, index(b))engine=innodb; insert into temp_t select * from t2 where b>=1 and b<=2000; select * from t1 join temp_t on (t1.b=temp_t.b);
了解了内存表的特性,你就知道了, 其实这里使用内存临时表的效果更好,原因有三个:
- 相比于InnoDB表,使用内存表不需要写磁盘,往表temp_t的写数据的速度更快;
- 索引b使用hash索引,查找的速度比B-Tree索引快;
- 临时表数据只有2000行,占用的内存有限
因此,你可以对语句序列做一个改写,将临时表t1改成内存临时表,并且在字段b上创建一个hash索引。
create temporary table temp_t(id int primary key, a int, b int, index (b))engine=memory; insert into temp_t select * from t2 where b>=1 and b<=2000; select * from t1 join temp_t on (t1.b=temp_t.b);
可以看到,不论是导入数据的时间,还是执行join的时间,使用内存临时表的速度都比使用InnoDB临时表要更快一些。
Memory引擎的几个特性。
可以看到,由于重启会丢数据,如果一个备库重启,会导致主备同步线程停止;如果主库跟这个备库是双M架构,还可能导致主库的内存表数据被删掉。
因此,在生产上,我不建议你使用普通内存表。
如果你是DBA,可以在建表的审核系统中增加这类规则,要求业务改用InnoDB表。我们在文中也分析了,其实InnoDB表性能还不错,而且数据安全也有保障。而内存表由于不支持行锁,更新语句会阻塞查询,性能也未必就如想象中那么好。
基于内存表的特性,我们还分析了它的一个适用场景,就是内存临时表。内存表支持hash索引,这个特性利用起来,对复杂查询的加速效果还是很不错的。
最后,我给你留一个问题吧。
假设你刚刚接手的一个数据库上,真的发现了一个内存表。备库重启之后肯定是会导致备库的内存表数据被清空,进而导致主备同步停止。这时,最好的做法是将它修改成InnoDB引擎表。
假设当时的业务场景暂时不允许你修改引擎,你可以加上什么自动化逻辑,来避免主备同步停止呢?