查询长时间不返回

 
这个表有两个字段id和c,并且在里面插入了10万行记录。
mysql> CREATE TABLE `t` ( `id` int(11) NOT NULL, `c` int(11) DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB; delimiter ;; create procedure idata() begin declare i int; set i=1; while(i<=100000)do insert into t values(i,i) set i=i+1; end while; end;; delimiter ; call idata();
在表t执行下面的SQL语句:
mysql> select * from t where id=1;
查询结果长时间不返回。
notion image
图1 查询长时间不返回
一般碰到这种情况的话,大概率是表t被锁住了。接下来分析原因的时候,一般都是首先执行一下show processlist命令,看看当前语句处于什么状态。
然后我们再针对每种状态,去分析它们产生的原因、如何复现,以及如何处理。

等MDL锁

如图2所示,就是使用show processlist命令查看Waiting for table metadata lock的示意图。
Waiting for table metadata lock状态示意图
Waiting for table metadata lock状态示意图
 
出现这个状态表示的是,现在有一个线程正在表t上请求或者持有MDL写锁,把select语句堵住了。
MySQL 5.7中Waiting for table metadata lock的复现步骤
MySQL 5.7中Waiting for table metadata lock的复现步骤
 
session A 通过lock table命令持有表t的MDL写锁,而session B的查询需要获取MDL读锁。所以,session B进入等待状态。
这类问题的处理方式,就是找到谁持有MDL写锁,然后把它kill掉。
但是,由于在show processlist的结果里面,session A的Command列是“Sleep”,导致查找起来很不方便。不过有了performance_schema和sys系统库以后,就方便多了。(MySQL启动时需要设置performance_schema=on)
通过查询sys.schema_table_lock_waits这张表,我们就可以直接找出造成阻塞的process id,把这个连接用kill 命令断开即可。
查获加表锁的线程id
查获加表锁的线程id
 

等flush

接下来,我给你举另外一种查询被堵住的情况。
我在表t上,执行下面的SQL语句:
mysql> select * from information_schema.processlist where id=1;
我查出来这个线程的状态是Waiting for table flush
Waiting for table flush状态示意图
Waiting for table flush状态示意图
 
这个状态表示的是,现在有一个线程正要对表t做flush操作。MySQL里面对表做flush操作的用法,一般有以下两个:
flush tables t with read lock; flush tables with read lock;
这两个flush语句,如果指定表t的话,代表的是只关闭表t;如果没有指定具体的表名,则表示关闭MySQL里所有打开的表。
但是正常这两个语句执行起来都很快,除非它们也被别的线程堵住了。
所以,出现Waiting for table flush状态的可能情况是:有一个flush tables命令被别的语句堵住了,然后它又堵住了我们的select语句。
现在,我们一起来复现一下这种情况,复现步骤
Waiting for table flush的复现步骤
Waiting for table flush的复现步骤
 
在session A中,我故意每行都调用一次sleep(1),这样这个语句默认要执行10万秒,在这期间表t一直是被session A“打开”着。然后,session B的flush tables t命令再要去关闭表t,就需要等session A的查询结束。这样,session C要再次查询的话,就会被flush 命令堵住了。
图7是这个复现步骤的show processlist结果。这个例子的排查也很简单,你看到这个show processlist的结果,肯定就知道应该怎么做了。
Waiting for table flush的show processlist 结果
Waiting for table flush的show processlist 结果
 

等行锁

现在,经过了表级锁的考验,我们的select 语句终于来到引擎里了。
mysql> select * from t where id=1 lock in share mode;
由于访问id=1这个记录时要加读锁,如果这时候已经有一个事务在这行记录上持有一个写锁,我们的select语句就会被堵住。
复现步骤和现场如下:
行锁复现
行锁复现
行锁show processlist 现场
行锁show processlist 现场
显然,session A启动了事务,占有写锁,还不提交,是导致session B被堵住的原因。
这个问题并不难分析,但问题是怎么查出是谁占着这个写锁。如果你用的是MySQL 5.7版本,可以通过sys.innodb_lock_waits 表查到。
查询方法是:
mysql> select * from t sys.innodb_lock_waits where locked_table=`'test'.'t'`\G
通过sys.innodb_lock_waits 查行锁
通过sys.innodb_lock_waits 查行锁
 
可以看到,这个信息很全,4号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式,就是KILL QUERY 4或KILL 4。
不过,这里不应该显示“KILL QUERY 4”。这个命令表示停止4号线程当前正在执行的语句,而这个方法其实是没有用的。因为占有行锁的是update语句,这个语句已经是之前执行完成了的,现在执行KILL QUERY,无法让这个事务去掉id=1上的行锁。
实际上,KILL 4才有效,也就是说直接断开这个连接。这里隐含的一个逻辑就是,连接被断开的时候,会自动回滚这个连接里面正在执行的线程,也就释放了id=1上的行锁。

查询慢

 
mysql> select * from t where c=50000 limit 1;
由于字段c上没有索引,这个语句只能走id主键顺序扫描,因此需要扫描5万行。
作为确认,你可以看一下慢查询日志。注意,这里为了把所有语句记录到slow log里,我在连接后先执行了 set long_query_time=0,将慢查询日志的时间阈值设置为0。
全表扫描5万行的slow log
全表扫描5万行的slow log
Rows_examined显示扫描了50000行。你可能会说,不是很慢呀,11.5毫秒就返回了,我们线上一般都配置超过1秒才算慢查询。但你要记住:坏查询不一定是慢查询。我们这个例子里面只有10万行记录,数据量大起来的话,执行时间就线性涨上去了。
扫描行数多,所以执行慢,这个很好理解。
但是接下来,我们再看一个只扫描一行,但是执行很慢的语句。
下图是这个例子的slow log。可以看到,执行的语句是
mysql> select * from t where id=1;
虽然扫描行数是1,但执行时间却长达800毫秒。
扫描一行却执行得很慢
扫描一行却执行得很慢
如果我把这个slow log的截图再往下拉一点,你可以看到下一个语句,select * from t where id=1 lock in share mode,执行时扫描行数也是1行,执行时间是0.2毫秒。
加上lock in share mode的slow log
加上lock in share mode的slow log
看上去是不是更奇怪了?按理说lock in share mode还要加锁,时间应该更长才对啊。
可能有的同学已经有答案了。如果你还没有答案的话,我再给你一个提示信息,下图是这两个语句的执行输出结果。
两个语句的输出结果
两个语句的输出结果
 
第一个语句的查询结果里c=1,带lock in share mode的语句返回的是c=1000001。看到这里应该有更多的同学知道原因了。如果你还是没有头绪的话,也别着急。我先跟你说明一下复现步骤,再分析原因。
notion image
 
你看到了,session A先用start transaction with consistent snapshot命令启动了一个事务,之后session B才开始执行update 语句。
session B执行完100万次update语句后,id=1这一行处于什么状态呢?
notion image
session B更新完100万次,生成了100万个回滚日志(undo log)。
带lock in share mode的SQL语句,是当前读,因此会直接读到1000001这个结果,所以速度很快;而select * from t where id=1这个语句,是一致性读,因此需要从1000001开始,依次执行undo log,执行了100万次以后,才将1这个结果返回。
注意,undo log里记录的其实是“把2改成1”,“把3改成2”这样的操作逻辑,画成减1的目的是方便你看图。
案例
表结构如下:
mysql> CREATE TABLE `table_a` ( `id` int(11) NOT NULL, `b` varchar(10) DEFAULT NULL, PRIMARY KEY (`id`), KEY `b` (`b`) ) ENGINE=InnoDB;
假设现在表里面,有100万行数据,其中有10万行数据的b的值是’1234567890’, 假设现在执行语句是这么写的:
mysql> select * from table_a where b='1234567890abcd';
这时候,MySQL会怎么执行呢?
最理想的情况是,MySQL看到字段b定义的是varchar(10),那肯定返回空呀。可惜,MySQL并没有这么做。
那要不,就是把’1234567890abcd’拿到索引里面去做匹配,肯定也没能够快速判断出索引树b上并没有这个值,也很快就能返回空结果。
但实际上,MySQL也不是这么做的。
这条SQL语句的执行很慢,流程是这样的:
  1. 在传给引擎执行的时候,做了字符截断。因为引擎里面这个行只定义了长度是10,所以只截了前10个字节,就是’1234567890’进去做匹配;
  1. 这样满足条件的数据有10万行;
  1. 因为是select *, 所以要做10万次回表;
  1. 但是每次回表以后查出整行,到server层一判断,b的值都不是’1234567890abcd’;
  1. 返回结果是空。
虽然执行过程中可能经过函数操作,但是最终在拿到结果后,server层还是要做一轮判断的。