普通索引和唯一索引

普通索引
普通索引(由关键字KEY或INDEX定义的索引)的唯一任务是加快对数据的访问速度。
因此,应该只为那些最经常出现在查询条件(WHERE column=)或排序条件(ORDERBY column)中的数据列创建索引。
只要有可能,就应该选择一个数据最整齐、最紧凑的数据列(如一个整数类型的数据列)来创建索引。
唯一索引
它与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。
在对该列进行增或改时,首先会检查是否重复,在执行增改操作,否则报出duplicate错误,拒绝操作。

两种索引对性能的影响

innoDB的索引组织结构
innoDB的索引组织结构
查询过程
假设,执行查询的语句是 select id from T where k=5。这个查询语句在索引树上查找的过程,先是通过B+树从树根开始,按层搜索到叶子节点,也就是图中右下角的这个数据页,然后可以认为数据页内部通过二分法来定位记录。
  • 对于普通索引来说,查找到满足条件的第一个记录(5,500)后,需要查找下一个记录,直到碰到第一个不满足k=5条件的记录。
  • 对于唯一索引来说,由于索引定义了唯一性,查找到第一个满足条件的记录后,就会停止继续检索。
那么,这个不同带来的性能差距会有多少呢?答案是,微乎其微。
你知道的,InnoDB的数据是按数据页为单位来读写的。也就是说,当需要读一条记录的时候,并不是将这个记录本身从磁盘读出来,而是以页为单位,将其整体读入内存。在InnoDB中,每个数据页的大小默认是16KB。
因为引擎是按页读写的,所以说,当找到k=5的记录的时候,它所在的数据页就都在内存里了。那么,对于普通索引来说,要多做的那一次“查找和判断下一条记录”的操作,就只需要一次指针寻找和一次计算。
当然,如果k=5这个记录刚好是这个数据页的最后一个记录,那么要取下一个记录,必须读取下一个数据页,这个操作会稍微复杂一些
但是,我们之前计算过,对于整型字段,一个数据页可以放近千个key,因此出现这种情况的概率会很低。所以,我们计算平均性能差异时,仍可以认为这个操作成本对于现在的CPU来说可以忽略不计。
更新过程
比如,要插入(4,400)这个记录,就要先判断现在表中是否已经存在k=4的记录,而这必须要将数据页读入内存才能判断。如果都已经读入到内存了,那直接更新内存会更快,就没必要使用change buffer了。
现在,你已经理解了change buffer的机制,那么我们再一起来看看如果要在这张表中插入一个新记录(4,400)的话,InnoDB的处理流程是怎样的。
第一种情况是,这个记录要更新的目标页在内存中。这时,InnoDB的处理流程如下:
  • 对于唯一索引来说,找到3和5之间的位置,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,找到3和5之间的位置,插入这个值,语句执行结束。
这样看来,普通索引和唯一索引对更新语句性能影响的差别,只是一个判断,只会耗费微小的CPU时间。
但,这不是我们关注的重点。
第二种情况是,这个记录要更新的目标页不在内存中。这时,InnoDB的处理流程如下:
  • 对于唯一索引来说,需要将数据页读入内存,判断到没有冲突,插入这个值,语句执行结束;
  • 对于普通索引来说,则是将更新记录在change buffer,语句执行就结束了。
 
将数据从磁盘读入内存涉及随机IO的访问,是数据库里面成本最高的操作之一。change buffer因为减少了随机磁盘访问,所以对更新性能的提升是会很明显的。
之前我就碰到过一件事儿,有个DBA的同学跟我反馈说,他负责的某个业务的库内存命中率突然从99%降低到了75%,整个系统处于阻塞状态,更新语句全部堵住。而探究其原因后,我发现这个业务有大量插入数据的操作,而他在前一天把其中的某个普通索引改成了唯一索引。
 

change buffer 和 redo log

 
现在,我们要在表上执行这个插入语句:
insert into t(id,k) values(id1,k1),(id2,k2);
这里,我们假设当前k索引树的状态,查找到位置后,k1所在的数据页在内存(InnoDB buffer pool)中,k2所在的数据页不在内存中。如图2所示是带change buffer的更新状态图
带change buffer的更新过程
带change buffer的更新过程
分析这条更新语句,你会发现它涉及了四个部分:内存、redo log(ib_log_fileX)、 数据表空间(t.ibd)、系统表空间(ibdata1)
这条更新语句做了如下的操作(按照图中的数字顺序):
  1. Page 1在内存中,直接更新内存;
  1. Page 2没有在内存中,就在内存的change buffer区域,记录下“我要往Page 2插入一行”这个信息
  1. 将上述两个动作记入redo log中(图中3和4)。
做完上面这些,事务就可以完成了。所以,你会看到,执行这条更新语句的成本很低,就是写了两处内存,然后写了一处磁盘(两次操作合在一起写了一次磁盘),而且还是顺序写的。
同时,图中的两个虚线箭头,是后台操作,不影响更新的响应时间。
那在这之后的读请求,要怎么处理呢?
比如,我们现在要执行 select * from t where k in (k1, k2)。这里,我画了这两个读请求的流程图。
如果读语句发生在更新语句后不久,内存中的数据都还在,那么此时的这两个读操作就与系统表空间(ibdata1)redo log(ib_log_fileX)无关了。所以,我在图中就没画出这两部分。
带change buffer的读过程
change buffer的读过程
从图中可以看到:
  1. 读Page 1的时候,直接从内存返回。有WAL之后如果读数据,是不是一定要读盘,是不是一定要从redo log里面把数据更新以后才可以返回?其实是不用的。你可以看一下图3的这个状态,虽然磁盘上还是之前的数据,但是这里直接从内存返回结果,结果是正确的。
  1. 要读Page 2的时候,需要把Page 2从磁盘读入内存中,然后应用change buffer里面的操作日志,生成一个正确的版本并返回结果。
可以看到,直到需要读Page 2的时候,这个数据页才会被读入内存。
所以,如果要简单地对比这两个机制在提升更新性能上的收益的话,redo log 主要节省的是随机写磁盘的IO消耗(转成顺序写),而change buffer主要节省的则是随机读磁盘的IO消耗。
 
change buffer一开始是写内存的,那么如果这个时候机器掉电重启,会不会导致change buffer丢失呢?change buffer丢失可不是小事儿,再从磁盘读入数据可就没有了.merge过程,就等于是数据丢失了。会不会出现这种情况呢?
这个问题的答案是不会丢失。虽然是只更新内存,但是在事务提交的时候,我们把 change buffer 的操作也记录到 redo log 里了,所以崩溃恢复的时候,change buffer 也能找回来。
在评论区有同学问到,merge 的过程是否会把数据直接写回磁盘,这是个好问题。这里,我再为你分析一下。
merge 的执行流程是这样的:
1. 从磁盘读入数据页到内存(老版本的数据页);2. 从 change buffer 里找出这个数据页的 change buffer 记录 (可能有多个),依次应用,得到新版数据页;3. 写 redo log。这个 redo log 包含了数据的变更和 change buffer 的变更。
到这里 merge 过程就结束了。这时候,数据页和内存中 change buffer 对应的磁盘位置都还没有修改,属于脏页,之后各自刷回自己的物理数据,就是另外一个过程了。
 

普通索引和唯一索引的选择方法

普通索引和唯一索引应该怎么选择。其实,这两类索引在查询能力上是没差别的,主要考虑的是对更新性能的影响。所以,我建议你尽量选择普通索引。
如果所有的更新后面,都马上伴随着对这个记录的查询,那么你应该关闭change buffer。而在其他情况下,change buffer都能提升更新性能。
在实际使用中,你会发现,普通索引和change buffer的配合使用,对于数据量大的表的更新优化还是很明显的。
特别地,在使用机械硬盘时,change buffer这个机制的收效是非常显著的。所以,当你有一个类似“历史数据”的库,并且出于成本考虑用的是机械硬盘时,那你应该特别关注这些表里的索引,尽量使用普通索引,然后把change buffer 尽量开大,以确保这个“历史数据”表的数据写入速度。